Γιατί θα μιλήσουμε σήμερα ..

Clustering
- περίληψη των 3 papers του προηγούμενου μαθήματος
- μερικά στοιχεία για το πώς έχουμε σημασιολογική αμοιβαίωση σε διαμέσου ρόλο συστήματα

Metá to Πάσχα ..

Database related:
- advanced queries

Άσκηση για 17/5

Ένα άρθρο επισκόπησης ("survey") με θέμα «Συστήματα Ομότιμων Κόμβων»
- Αυτοματοποίηση εργασιών (αντιγραφή θα μηδέν στο μάθημα)
- Θα παρουσιαστούν (τουλάχιστον) τα papers που διαβάσαμε μέχρι σήμερα
- Θα αναφερθεί στα τέλος του μαθήματος (με προσθήκη νέων άρθρων)
- 25% ή 40% του βαθμού σας (15% το πρώτο μέρος + 20% ή 25% το δεύτερο και τελικό μέτρο της διορθώσεως) έως και 50% αν δε δοθεί τελικό διαγώνισμα

Άσκηση για 17/5

Κάποιες οδηγίες (περαιτέρω στη σελίδα μέχρι και 25/4)
- Μέγεθος έως 3000 λέξεις (πρώτη έκδοση)
- Δημιουργικό άρθρο
- Περίληψη (abstract)
- Εισαγωγή, Ενότητες x-u, Συμπέρασμα
- Περιεχόμενα στα αγγλικά ή στα ελληνικά

Άσκηση για 17/5

Άσκηση για 17/5

Κάποιες οδηγίες (ανεξαιρέτως)
- Το άρθρο αυτό θα παρουσιαστεί ανά περετήριο - το άρθρο αυτό πρέπει να είναι ενσωματωμένο, να διαβαστεί άμεσα ως ένα κεφάλαιο σε διδακτικό βιβλίο
- Συμπεριλαμβάνεται πίνακες, ταξινομήσεις κατ θέμα βαθμολογηθούν θετικά
- Απαραίτητη η χρήση κοινής ορολογίας
- Χρήση "τμημάτων" από άλλες ερευνητικές εργασίες ή άρθρα επισκόπησης πρέπει να αναφέρεται άμεσα (θα, κα βλ. [xx] ή όπως αναφέρεται στο [xx])
- "Αντιμετώπιση (μέρος ή άλλο) από άλλες ερευνητικές εργασίες ή άρθρα επισκόπησης ΑΠΑΓΟΡΕΥΕΤΑΙ ΑΥΣΤΗΡΑ (⇒ μηδέν στο μάθημα)⊥"
Semantic Clustering of Peers

Semantic Overlay Networks
Unstructured networks: each node connects to some random nodes - what if we cluster nodes based on their content, interests, previous queries?
IDEA:
Build "topic" groups or sub-networks
Two step routing procedure:
• Identify the appropriate group
• Routing inside the group

Semantic Overlay Networks (SONs) for P2P [Crespo&Garcia-Molina03]
• Non DHT-based (unstructured)
• Clustering on content
• Supports content hierarchies (classification) and layered SONS

Semantic P2P Overlays

Cluster nodes and not content
That is, groups (clusters) of nodes
Content is not moved
Each node \(n_i \) maintains a set of documents \(D_i \)
Based on their documents nodes join specific SONs

Note, two types of queries
Exhaustive queries (return all documents matching a query)
Partial queries (return a minimum number of results)
Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

Builds a number of overlays (not just one)
a link between two nodes \(n_i \) and \(n_j \) has a label \(l \) indicating the overlay

Goal:
Define this set of overlay networks such that, given a query, we can select a small number of overlay networks whose nodes have a high number of hits
(how routing inside each overlay is performed is not discussed)

Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

Classification hierarchies: a tree of concepts

Example of three classification hierarchies for music documents

• One SON per concept of the hierarchy (e.g., 9 for the one in the left)
• Each query and document is classified into one or more leaf concepts in the hierarchy

Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

Document and Query Classification

• May be imprecise: returns a non-leaf node \(A \): the document (or the query) belongs to one or more descendant of \(A \), but the classifier cannot determine which one
• May make mistakes: return the wrong concept

Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

Document Classification

• Differential assignment: place the document only in the concept that it belongs
• Total assignment: in addition, place the document in all ancestors of the concept and all its descendants

Differential assignments makes query assignment more complicated, why?

Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

Node Classification

• Based on the classification of its documents
• Conservative (place a node in the SON for concept \(c \), if at least one document in concept \(c \) – less conservative (a significant number of documents in \(c \))
• reduces number of nodes per SON
• but, may loose results

Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina03]

“Global procedure”
Find a good classification hierarchy and store it

Run a query classifier
Send it to the appropriate SONs

Join
Flood to learn the hierarchies
Run a document classifier
Join each SON
Semantic Overlay Networks (SONs) for P2P [Crespo & Garcia-Molina 03]

Issues

Query vs. documents classifiers
- Query classifiers must be fast and maybe imprecise, document classifiers may not be so fast but need to be more precise (in addition they are "bursty").

What is a "good" classification hierarchy?
1. Produces buckets of documents that belong to a small number of nodes
2. Nodes have documents in a small number of buckets
3. There exist efficient classifiers

Layered SONs

Semantic P2P Overlays

Based on concepts from a *predefined* concept hierarchy

Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems [Sripanidkulchai et al., Infocom 03]

- Non-DHT-based, but can also be applied to DHT-based *(Does this hold for SONs? How?)*
- Clustering on previous results (interests)
- On top of Gnutella, additional connections among nodes

Interest-based P2P Overlays

Each node creates a short-cut list:
- One of the nodes with matching results is selected at random and added in the short-cut list
- Replacement based on perceived utility
Non DHT-based

Clustering based on content (Guide/Possession Rules)

Guide Rule: set of peers that satisfy some predicate

Possession Rule: each associated with a data item - the predicate is the presence of the item in the node

Eg Rule(A)
Node n has item A

Possession-Rules P2P Overlays

One cluster per Item

Two step routing procedure:
- STEP 1: The originating peer decides which guiding rules among those it belongs to, to use
- STEP 2: Routing inside each routing rule is blind (Gnutella-like)

A search strategy defines a search process as a sequence of guide rules and extent of search within each rule

Many propagation rules may be needed
Eg search 100 peers that have item A and 200 paper peers that have item B, if this is unsuccessful, then search 400 …

Unclear how they are specified

Example Search Strategy of P26:
- 2 hops in rule(A)
- 4 hops in rule(B)
- 6 hops in rule(C)

4 hops in rule(A)
3 hops in rule(B)

Index of P26

Rules/Items:
- Rule(A)
- Rule(B)
- Rule(C)
- Rule(D)

Table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Rule's Item</th>
<th>neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>p1, p7, p3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>p2, p6, p9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>p13, p15, p1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>p4, p5, p10</td>
<td></td>
</tr>
</tbody>
</table>

Iteratively searches for the items it has
Blind searching for O takes 13 probes
Searching with rule(O) takes 2 probes

Rules/Items:
Rule(A)
Rule(B)
Rule(C)
Rule(D)

RAPIER

STEP 1: (The originating peer decides which guiding rules among those it
belong to, to use)
Choose a random item from its index (i.e. a guiding rule
uniformly at random)

STEP 2: (Routing inside each routing rule is blind - Gnutella-like)
Perform a blind search on the possession-rule for the item to
some predefined depth

Goal: compare RAPIER with
URAND: blind search, all peers equally liked to be
probed
PRAND: the likelihood that a peer is probed is
proportional to the size of its index - WHY?

RAPIER is biased towards searching in peers with many items (i.e many guide
rules). Is that enough? Is it OK if we just choose nodes with many items (no
guide rules)?

Caveat: comparing apples and
oranges

• When searching by possession rules we have bias towards peers
 that participate in more rules/ have more items.
• But, with this bias, a strategy has better chance of finding what it
 is looking for! So...
• We show that the likelihood of being probed is proportional to
 number of rules you participate in.
• PRAND "blind search" strategy has same bias.
• Thus, it is "fair" to compare PRAND with possession-rule
 based RAPIER

Items belong to "topics." There are very many topics; but
each peer can only select items from a fixed set of topics.
Topic popularities can highly vary; but each peer has equal
interest in each of "its" topics.

Show that
• RAPIER is at least as good as PRAND
• RAPIER is better than PRAND when peers have fewer
 topics
• Simple model that hints on what is going on...

ESS (Expected Search Size)
$1/(\text{success probability in each probe})$
(when probes are "independent")

Probe success probability:
• URAND: fraction of peers that have the item in their index
• PRAND: the weight of each peer is its index size divided by
 sum of index sizes of all peers
 - Success prob: (weight of peers with item) / (weight of
 peers without item)
• RAPIER: the average, over possession rules peer participates
 in, of fraction of peers in rule that have the item.
Associative Search in Peer-to-Peer Networks: Harnessing Latent Semantics [CohenFiatKaplan, Infocom03]

Peer-Item Matrix

<table>
<thead>
<tr>
<th>Peers</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>1 1 1</td>
</tr>
<tr>
<td>0 0 0 1 0</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>0 0 1 0 0 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 0 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1 1 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 1 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 1 0 0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

What is latent semantics?

• Peer/Item matrix is "Market Basket" dataset. Similar to buyers/items, Document/terms, Web-pages/hyperlinks, movies/viewers.

• Applications for extracting patterns from market basket data: Information Retrieval, Collaborative Filtering, Web search, Marketing, Recommendation Systems,... (clustering, search, association rules)

What is latent semantics?

Selections people make are dependent:

• If you buy baby formula, you are more likely to buy diapers.

• If two people loved a show, they are more likely to agree on other shows.

Remarks

• semantic proximity between peers:
 • similarity between their cache contents or download patterns
 • IDEA: semantically related peers are more likely to be useful to each other
 • Use a predefined classification (SONs), semantic shortcuts (peers that share interests), possession rules (peers that share documents)

Peer-to-Peer Information Retrieval Using Self-Organizing Semantic Overlay Networks [TangXuDwarkadas, SIGCOM03]

• DHT-based
 • Placement of peers in the DHT not based on their ID but on their content
 • Placement of documents (or indexes [of documents]) on nodes based on their content, not just their ID (keyword, title)
 • How: For each document create a vector and use this vector to place the document
How to create the vector for each document:

Vector Space Model (VSM)

Documents and queries are represented as Term Vectors

- Each element of the vector corresponds to the importance of the term in the document (or the query)
- Statistical computation of vector elements
- Term frequency \times inverse document frequency

Ranking of retrieved documents
- Similarity between document vector and query vector

Example with 4-term vectors

<table>
<thead>
<tr>
<th>vocabulary</th>
<th>VA</th>
<th>VQ</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>computer</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>network</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>routing</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Document A: "books on computer networks"
Document B: "network routing in P2P networks"
Query Q: "computer network"

VSM suffers from synonyms and noise in documents

Latent Semantics Indexing (LSI)

- Uses Singular Value Decomposition (SVD) to transform a high-dimensional term vector to a low-dimensional semantic vector (based on abstract concepts)
- Elements correspond to the importance of the abstract concept in document/query

Use CAN

CAN Overview
- Partition Cartesian space into zones
- Each peer is assigned to a zone
- Neighboring zones are routing neighbors
- An object key is a point in the space
- Object lookup is done through routing

pSearch Overview

- CAN: organize nodes into a semantic overlay
- LSI: generate semantic vectors
 - Used as object key to store doc indices in the CAN
 - Indices close in semantics are stored close in the overlay
- Two types of operations
 - Publish document indices (join)
 - Process queries (route)
pSearch Basic Algorithm: Setup

- Dimensionality of CAN = dimensionality of LSI’s semantic space
- Index of documents:
 - key: document’s semantic vector
 - value: reference (URL) to document

pSearch Basic Algorithm: Steps

Join:
1. Receive a new document A: generate a semantic vector V_A, store the key in the index (USE CAN)

Route:
2. Receive a new query Q: generate a semantic vector V_Q, route the query in the overlay (USE CAN)
3. The query is flooded to nodes within a radius r determined by similarity threshold or number of wanted documents
4. All receiving nodes do a local search and report references to best matching document

pSearch Illustration

Major Challenges

1. Dimensionality mismatch between CAN and LSI
 LSI: 50 - 350
 Many dimensions are not partitioned: search space not reduced in these dimensions
2. Large search region
3. Uneven distribution of indices

Dimensionality Mismatch

- Rotate vectors based on estimated effective dimensionality (number of actually partitioned dimensions) of the CAN
- Index the vector p times
- pLSI algorithm is executed p times for a query
- Does not affect similarity measure
Dimensionality Mismatch: Rolling Index

We have only two dimensions – q is not similar with A in this two dimensions!

Rotate with $m = 2$

Large Search Region

Curse of dimensionality:

In centralized index structures, the search space grows quickly as dimensionality of data increases.

Observations:
1. High-dimensional data spaces are sparsely populated
2. The distance between a query and its neighbors steadily grows with dimensionality

For a naïve nearest-neighbor search to work, a large number of nodes must be searched

Content-directed Search

• Search the node whose zone contains the query semantic vector. (query center node)

• Search direct (1-hop) neighbors of query center

• Selectively search some 2-hop neighbors
 - Focusing on “promising” regions suggested by samples

Unbalanced Index Distribution

Solution: content-aware node bootstrapping
1. A new node randomly picks a document to publish
2. The node computes the semantic vector
3. The vector is rotated to a space i
4. The node containing the semantic vector splits in the middle giving half of the space to the new node

Effects of bootstrapping:
1. More balanced index distribution
2. Index locality (share content)
3. Query locality (share interests)
Conclusion

- Map semantic space generated by modern IR algorithms atop overlay networks to enable efficient P2P search

- pLSI is good at clustering documents

- Index locality: indices stored close in the overlay network are also close in semantics